General Specifications

pH and ORP Sensors

GS 12B07B02-E

GENERAL

Yokogawa's process pH (PH8EFP, PH8ERP) and ORP (OR8EFG, OR8ERG) meters are highly reliable and feature advanced functions which are useful for a wide variety of applications including water quality management in a broad range of production processes and medium-sized wastewater treatment plants, or for general pH and ORP control systems. Based on Yokogawa's track record and years of experience, a comprehensive range of products has been produced to provide solutions best suited to individual applications.

For reliable measurement of pH of high purity water in boilers and semiconductor process applications, the pH sensor PH8EHP and holder PH8HH are offered.

This GS mentions PH8EFP, PH8ERP, OR8EFG and OR8ERG. See GS12B10B00-01EN about PH4/OR4 Sensor Series pH/ORP Sensor.

FEATURES

Ryton pH/ORP Sensors PH8EFP, PH8ERP, OR8EFG, OR8ERG

- •With the body made of Ryton, a strong engineering plastic, which is comparable to Fluororesin (PTFE) in terms of corrosion resistance and heat resistance, it allows for a wide range of applications.
- •A single type of sensor can support all applications regardless of whether a holder or cleaner is used.
- •The integrated-sensor design simplifies calibration with standard solutions and maintenance.
- The pH glass electrode of a pH sensor, the platinum or gold electrode of a ORP sensor and junction can be individually replaced.

pH Sensor for High Purity Water: PH8EHP

- •The dedicated holder provides solutions to problems that arise when measuring high-purity water.
- Combined with FLXA[™]202/FLXA[™]21, FLXA[™]402, compensates for the effect of fluid temperature.

EXA PH and FLXA are either registered trademarks or trademarks of Yokogawa Electric Corporation.

All other company and product names mentioned in this GS are registered trademarks or trademarks of their respective companies

GS 12B07B02-E ©Copyright Jan. 2000 17th Edition Sep. 2021

SYSTEM CONFIGURATION

For the FLXA202, FLXA21 2-Wire Analyzer, see GS 12A01A03-01EN, GS 12A01A02-01E, for the FLXA402 4-Wire Converter, see GS 12A01F01-01EN. For FLXA402T, see GS12F05B10-01EN and 12E01B30-01EN For the FC800D, FLXA402T, Non-reagent type Free Available Chlorine Analyzer, see GS 12F05B10-01EN. For the TB820D, FLXA402T, Right Angle Scattered Light Turbidity Analyzer, see GS 12E01B30-01EN. For the holders or cleaning devices, see GS 12J05C02-00E. For the PG400 pulse generator for clean unit, see GS 19C01B05-01EN.

Fig.1-a System Configuration (General Purpose, Non-Explosionproof Types)

Fig.1-b System Configuration (For Pure Water)

SPECIFICATIONS

1. pH Sensor

1-1. Common Specifications

Measured object	1
-----------------	---

Measuring range

:Hydrogen ion concentration (pH) in aqueous solution Measurement principle :Glass electrode method :Different by used sensor Measurement conditions: Process temperature ;See Table 1 :See Table 2

Process pressure Conductivity ;50 µS/cm or higher Note: Use PH8EHP(a sensor for high purity water) if the conductivity is lower than 50 µS/cm.

Table 1. Process Temperature Range

pH Sensor	Holder Type (*2) (*3)	Holder Material (*1)	Cleaner	pH Range	Temperature (°C)	
	Guide-pipe	PVC	None		-5 to 50	
	(PH8HG)	PP	None		-5 to 80	
	Submersion (PH8HS)	PP	None, Provided		-5 to 80	
PE8ERP	Flow-through (PH8HF)	SS	None, Provided	2 to 12	-5 to 80	
	Suspension (HH350G)	SS	None, Provided		-5 to 80	
Float (PB350G, PB360G)	PP, SS	None		-5 to 50		
Guide-	Guide-pipe	PVC	None	2 to	-5 to 50	
	(PH8HG)	(PH8HG)	PP	None	12	-5 to 80
	Submersion	PP,	None		-5 to 100	
	(PH8HS)	(PH8HS)	SS	Provided		-5 to 80
Flow-through	Flow-through	PP	None, Provided		-5 to 80	
PH8EFP	(PH8HF)	66	None	0 to	-5 to 105	
		- 33	Provided	14	-5 to 80	
Susper (HH35 Floa (PB35 PB360	Suspension (HH350G)	SS	None, Provided		-5 to 80	
	Float (PB350G, PB360G)	PP, SS	None		-5 to 50	
PH8EHP	High purity water(PH8HH)	Acryl	None	2 to 12	0 to 50	

Note: PV: Rigid Polyvinyl, PP: Polypropylene, SS: Stainless Steel Stainless steel holder should be used when the pH value of *1 the solution is pH3 or more acidic.

For flow-through types, refer also to the solution temperature *2 and pressure diagram of Holder GS 12J05C02-00E.

When sensors are used with Variopin connectors, the sensors *3 can connect to Submersion-type or Flow-through type of holders

Table 2. Process Pressure Range

pH Sensor Holder	PH8ERP	PH8EFP	
Submersion	Atmospheric pressure (Submersion depth: 3 m max.)		
Guide-pipe Suspension Float	Atmospheric pressure (Submersion depth: 3 m max.)		
	Atmospheric pressure	Atmospheric pressure to 10 kPa (*2)	
riow-unrough ("1)	to 50 kPa	Atmospheric pressure to 500 kPa (*3)	

*1 For flow-through types, refer also to the solution temperature and pressure diagram of Holder GS 12J05C02-00E.

*2 When general purpose reserve tank used.

*3 When medium-pressure reserve tank used.

Table 3. Selection for pH Sensor

pH Sensor	PH8ERP	DUSEUD
Application	PH8EFP	РНОЕНР
General purpose	OK	NA
High purity water	NA	OK
Contaminating and sulfide-containing solutions	NA	NA
Caustic electrolysis solutions Solutions containing organic solvents	NA	NA
Waste water containing hydrofluoric acid	NA	NA

Note: The table above is just for reference. Consult sales personnel about selection.

2 KCI Bofilloble Type Sensor (BH9EBB)

1-2. KUI Refii	lable Type Ser	ISOF (PHOERI	-)
Measuring ra	ange: pH	l2 to 12	
Measuring te	mperature: -5	to 80°C	
(\$	See Table 1 whe	n using holder)
Measuring p	ressure: Atr	mospheric press	sure to 50 kPa
(See Table 2 whe	en usina holde	er)
Temperature	compensation	sensor: Pt100	0
Wetted part	naterials.		
Body:	Ryton (PPS re	sin) alass tita	anium or
Dody,	Hastellov C. ce	eramics Fluor	n rubber
	(EKM) or Porfl	uoroelastome	
Cable	(I Kivi) OI I EIII	luothylono ruk	hor (Coble
Cable,	chiorinateu po	iyeti yiene rut	bei (Cable
	sneatri)		
vveight: A	pprox. 0.4 kg		
1-3. KCI Fillir	a Type Senso	r PH8EFP	
Measuring ra	ange: pH	10 to 14	
Measuring te	mperature: -5	to 105°C	
(.	5 to 80°C wher	using Guide-	nine holder)
	See Table 1 wh	en usina holde	r)
Measuring n		shi dollig holde	,
A	tmospheric pre	ssure to 10 kF	0.2
	Coneral nurnose	or hig volume	tank 500 ml)
	Soo Toblo 2 wh	or big volume	(ank 500 mL)
(•			ار
P			Га
(viedium pressur	re)	
· · (·	see Table 2 whe	en using noide	er)
Temperature	compensation	sensor:	Pt1000
Wetted part	naterials:		
Body;	Ryton (PPS res	in), Glass, Tita	nium or
	Hastelloy C, Ce	ramics or Fluo	roresin
	(PTFE), Fluoro	rubber (FKM) ı	rubber or
	Perfluoroelasto	mer (FFKM)	
Cable;	Chlorinated polye	thylene rubber (Cable sheath)
KCI tube;	Heat-resistant	soft PVC (Ge	neral
	purpose or big	volume tank !	500 mL),
	Polyethylene (Medium press	sure)
Weight:	(•	
Sensor; A	oprox. 0.4 kg		
Tank; A	prox.0.3 kg (G	eneral purpos	e)

Approx. 1 kg (Medium pressure) Approx. 0.8 kg (Big-volume)

2. ORP Sensor

2-1. Common Specifications

Measured object:

Oxidation-Reduction potential in aqueous solution Measurement principle: Metal electrode method Measuring range: -1500 to 1500 mV Measurement conditions: Tabla P

rocess	temperature:	See	lable	4
Process	pressure:	See	Table	5

Table 4. Process Temperature Range

ORP Sensor	Holder Type (*2)	Holder Material (*1)	Cleaner	Temperature (°C)
	Cuido nino	PVC	None	-5 to 50
	Guide-pipe	PP	None	-5 to 80
	Submersion,	PP	None, Provided	-5 to 80
OR8ERG	through	SS	None, Provided	-5 to 80
	Suspension	SS	None, Provided	-5 to 80
	Float	PP, SS	None	-5 to 50
	Guide-pipe	PVC	None	-5 to 50
		PP	None	-5 to 80
	Submornion		None	-5 to 100
	Submersion	PP, 33	Provided	-5 to 80
OR8EFG	Flow- through	PP	None, Provided	-5 to 80
		SS	None	-5 to 105
			Provided	-5 to 80
	Suspension	SS	None, Provided	-5 to 80
	Float	PP, SS	None	-5 to 50

 Note:
 PV: Rigid Polyvinyl, PP: Polypropylene, SS: Stainless Steel

 *1
 Stainless steel holder and should be used when the pH value

of the solution is pH3 or more acidic. *2 For flow-through types, refer also to the solution temperature and pressure diagram of holders GS 12J05C02-00E.

Table 5. Process Pressure Range

ORP Sensor Holder	OR8ERG	OR8EFG
Submersion	Atmospheric pressure (Submersion depth: 3 m max.)	
Guide-pipe Suspension Float	Atmospheric pressure (Submersion depth: 3 m max.)	
Flow-through	Atmospheric	General purpose Atmospheric pressure to10 kPa
(*1)	to 50 kPa	Medium pressure Atmospheric pressure to 500 kPa

*1: For flow-through types, refer also to the solution temperature and pressure diagram of Holder GS 12J05C02-E.

Table 6. Selection of ORP sensor

	ORP sensor	OR8ERG, O	R8EFG
Application		Platinum	Gold
General pur	pose	OK	NA
Drainage	Cyanogen treatment	NA	OK
treatment	Chrome treatment	NA	OK
Contaminated solutions		NA	NA
Solutions containing sulfide ion		NA	NA
Electrolytic process solutions		NA	NA

Note: The table above is just for reference.Consult sales personnel about the selection.

2-2. KCI Refillable Type Sensor OR8ERG Measuring range: -1500 to 1500 mV Measuring temperature: -5 to 80°C (See Table 4 when using holder)	
Measuring pressure: Atmospheric pressure to 50 kPa (See Table 5 when using holder)	
Wetted part materials:	
Body; Ryton (PPS resin), platinum-glass or gold-epoxy resin, titanium, ceramics, Fluoro rubber (FKM)	
Cable; Chlorinated polyethylene rubber (Cable sheath)	
Weight: Approx. Ó.4 kg	
2-3. KCI Filling Type Sensor OR8EFG	
Measuring range: -1500 to 1500 mV	
Measuring temperature: -5 to 105°C	
(-5 to 80°C when using guide-pipe holder)	
(See Table 4 when using holder)	
Measuring pressure:	
Atmospheric pressure to 10 kPa	
(General purpose or big volume tank 500 mL)	l
(See Table 5 when using holder)	
Atmospheric pressure to 500 kPa	
(Medium pressure)	
(See Table 5 when using holder)	
Reduce Date materials.	
gold-epoxy resin, titanium or Hastelloy C, Ceramics or Fluoroesin (PTFE), Fluoro rubber (FKM)	
Cable: Chlorinated polyethylene rubber (Cable sheath)	
KCI tube: Heat-resistant soft PVC (General purpose)	
Polvethylene (Medium pressure)	
Weight:	
Sensor; Approx. 0.4 kg	
Tank; Approx. 0.3 kg (General purpose)	
Approx. 1 kg (Medium pressure)	
3. pH Measuring System for High Purity Water	
Use a noider for high purity water when using pH	
sensor for high purity water.	

3-1. pH Sen	sor for High	Purity Water PH8EHP
Measuring	temperature:	0 to 50°C
Measuring	pressure:	Atmospheric pressure
Temperatu	re compensat	ion sensor:Pt1000
Measuring	conductivity:	See Fig. 2
Measuring	flow rate:	See Fig. 2
Wetted par	t materials:	
Body; R	ton (PPS resi	n), glass, titanium or Hastelloy C,
C	eramics, Acryli	c resin, Fluoro rubber (FKM)
Cable; C	chlorinated poly	ethylene rubber (Cable sheath)
KCI tube	; Heat-resista	nt soft PVC
Weight:	Sensor ; App	rox. 0.4 kg
	Tank ; App	rox. 0.3 kg (General purpose)
3-2. Holder	for High Pur	ity Water PH8HH
Material:		
Wet part	; Acrylic resi	n (holder), Stainless steel
	(316 SS), 0	chloroprene rubber, NBR
Holdon	(INITILE-DUT	adien rubber)
Mounting	Stalliess s	Staiplass staal (304 SS)
Process co	nnections.	Stalliess steel (304 33)
Inlet.	Rc 1/4 or 1	/4NPT (F)
Outlet:	Rc 1/2 or 1	/2NPT (F)
Mounting N	Nethod:	
0	50A (2-inch) ve	ertical or horizontal pipe mounting
	(specify mount	ing bracket) or wall mounting
	(mounting brac	ket supplied with holder)
Weight:	Body; Approx	κ. 1.7 kg
2	Mounting Bra	icket; Approx. 0.7 kg

Fig.2 Solution flow rate and solution conductivity of sensor and holder for high purity water

4. Terminal Box

4-1. Terminal Box for General pH/ORP Sensors and PH4/OR4 Sensors (WTB10-PH1, -PH3, -PH5)

Used when analyzer or converter is installed remotely from general pH/ORP sensors and PH4/OR4 Sensors (PH4□ in no combination with SA405, OR4□, or PH4□T).

Maximum cable length including sensor cable length should be within 20 m.

Ambient temperature: -10 to 50°C Construction: JIS waterproof Case material: Fiberglass reinforced polycarbonate resin Case color: Grayish green (Munsell 2.5GY5.0/1.0) Electrical connections: pH sensor side;

ø21 mm hole (With G1/2 plastic gland) pH Analyzer or Converter side;

ø13 mm hole (With G1/2 plastic gland) With Cable (Maximum length 20 m) Conduit adapter(optional)

4-2. Terminal Box for PH4□ Sensors (WTB10-PH2, -PH4, -PH6)

Used when analyzer or converter is installed remotely from PH4[□] in combination with SA405.

Maximum cable length including sensor cable length should be within 20 m.

Ambient temperature : -10 to 50°C

Construction	: JIS waterproof
Case material	: Fiberglass reinforced
	polycarbonate resin
Case color	: Grayish green
	(Munsell 2.5GY5.0/1.0)

Electrical connections: pH sensor side:

ø21 mm hole (With G1/2 plastic gland) pH Analyzer or Converter side:

ø13 mm hole (With G1/2 plastic gland) With Cable (Maximum length 20 m) Conduit adapter(optional) Temperature sensor side:

Pg7 plastic gland

5. Accessories (Purchased Separately)

See Model and Suffix Codes.

Compliance with the simple apparatus requirements

PH8EFP, PH8ERP and PH8EHP meet the simple apparatus requirements defined in the following standards.

Note: TIIS certified types cannot be connected. Use the sensors under the conditions of use required by the standards.

Applicable standards:

ANSI/ISA-60079-11 (2014) ANSI/ISA-60079-0 (2009) CAN/CSA-C22.2 NO. 60079-11:14 CAN/CSA-C22.2 NO. 60079-0:11 IEC 60079-11 방호장치 의무안전인증 고시

GB 3836.4-2010

Conditions of use:

- Use in combination with an internally isolated analyzer, or use with, an analyzer in combination with isolated barrier. The FLXA21/202 is internally isolated.
- (2) Upper limit of the process temperature.

The upper limit of process temperature is indicated below when the sensor is used in combination with a YOKOGAWA analyzer.

For FLXA21/202, model and suffix code below is available.

FLXA21-D-□-D-◊-P1-○-A-N-LA-N-NN □ can be any value.

- ◊ must be EA, CD, CH, or EG
- o must be NN or P1.
- Any option code is available

FLXA202-D-D-O-P1-O-A-N-LA-N-NN

- □ can be any value.
 - ♦ must be CD, CH, or CG(pending)
 - must be NN or P1.
 - Any option code is available.

For PH202S, model and suffix code below is available.

PH202S-0-E

 $\,\circ\,$ must be C or U. There are no PH202S models that meet the Korean explosion proof standards.

Upper limit of process temperature on the PH8EFP

Analyzer used in combination	FLXA	21/202	PH202S		
Ambient temperature Ta Temperature class	40°C	60°C	40°C	60°C	
Т6	16	16	28	28	
T5	81	31	95 (*1)	43	
T4	105	66	105	78	
Т3	105	105	105	105	
T2	105	105	105	105	
T1	105	105	105	105	

*1: Care about upper limit 100°C of temperature class T5 should be taken.

Upper limit of process temperature on the PH8ERP

Analyzer used in combination	FLXA	21/202	PH202S		
Ambient temperature Ta Temperature class	40°C	60°C	40°C	60°C	
Т6	16	16	28	28	
T5	80	31	80	43	
T4	80	66	80	78	
Т3	80	80	80	80	
T2	80	80	80	80	
T1	80	80	80	80	

 Upper limit of process temperature on the PH8EHP

Analyzer used in combination	FLXA	21/202	PH202S		
Ambient temperature Ta Temperature class	40°C	60°C	40°C	60°C	
Т6	16	16	28	28	
T5	50	31	50	43	
T4	50	50	50	50	
Т3	50	50	50	50	
T2	50	50	50	50	
T1	50	50	50	50	

Other warnings are provided in the user's manual.

MODEL AND SUFFIX CODES

1. pH Sensor

KCI Refillable Type pH Sensor

Model		Suf	fix	Co	ode	Option Code	Specifications
PH8ERP	-						KCI Refillable Type pH Sensor
Cable	-	03					3 m
Length	-	05					5 m
	-1	07					7 m
	-	10					10 m
	-	15					15 m
		20					20 m
	-	NN					No cable (*7)
Solution		-TN					Titanium
Ground Tip		-H	IC				Hastelloy C
-			-N	1			Always -N
pH Measur	ing	g		-1	-		For PH200/PH400 (*1)
System				-E			For FLXA402, FLXA402T, PH202/
							FLXA202/FLXA21 (*2)
				-F			For FLXA202/FLXA21 (*6)
				-Е	3		For PH100 (*3)
	-G			For FLXA402, FLXA402T, PH450G,			
				PH202/TB (*5)			
		-V			Variopin connector (*8)		
Style					*A		Style A
Option				0-	rina	/PF	Perfluoroelastomer (FFKM) (*4)

*1: Mark band is shown by alphanumeric and fork terminals are used.*2: Mark band is shown by numeral and pin terminals are used.

- When terminal box is used, select WTB10-PH1. *3: The tag which indicated the color, the sign, and the number is
- attached to the cable of a sensor. *4: Choose Perfluoroelastomer (FFKM) when this is used in organic solvent, high alkali or high temperature solution.
- *5: Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH3.
- *6: Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.
- *7: Select -V for a measuring system.
- *8: Select -NN for the cable length. Submersion type or Flow-through type holders can be combined with Variopin connector.

• KCI Filling Type pH Sensor

Model		Su	ffix	C	ode		Option Code	Specifications
PH8EFP								KCI Filling Type pH Sensor
Cable Length	-0 -0	3 5						3 m 5 m
and KCI	-0	7						7 m
Tube	-1	0						10 m
Length	-1	5						15 m
	-2	0						20 m
	-\	/3						For Variopin connector 3m (*11)
	-\	/5						For Variopin connector 5m (*11)
	-\	7						For Variopin connector 7m (*11)
	-\	Ά						For Variopin connector 10m (*11)
	-\	/B						For Variopin connector 15m (*11)
	-\	/C						For Variopin connector 20m (*11)
Solution	-TN							Titanium
Ground Tip	-HC							Hastelloy C
KCI Reserve	Э		-т	Т1				For general purpose
Tank			-т	Т2				For medium pressure (*2)
(*1)			-т	ТЗ				Big volume tank(With 500 mL tank)
			-т	N1				For maintenance (for TT1, TT3)
			-т	N2				For maintenance (for TT2)
-				-N	1			Always -N
pH Measurii	ng (Sys	ster	n	-T			For PH200/PH400 (*3)
					-E			For FLXA402, FLXA402T, PH202/
								FLXA202/FLXA21(*4)
					-F			For FLXA202/FLXA21 (*10)
								For PH100 (*5)
-В								For FLXA402, FLXA402T, PH450G,
	-G							PH202/TB (*9)
	-V							Variopin connector (*12)
Style	yle *A							Style A
Option				(D-rin	g	/PF	Perfluoroelastomer (FFKM) (*6)
Speci	al g	llas	ss e	lec	trod	e	/HA	Glass electrode for high alkali (*7)
	Special glass electrode Special junction			n	/TF	PTFE junction (*8)		

*1: A 50A (2-inch) pipe mounting bracket is supplied with TT1, TT2 and TT3.

The number of bottles filled with 250 mL KCl solution, which are supplied respectively, are as follows:

TT1 : 1 bottle TT2 : 0 bottle

TT3 : 2 bottles

No KCl solution bottle is supplied for TT2. Arrange it from accessories or auxiliary parts. Only supply tube is supplied, but KCl tank is not supplied for TN1

Only supply tube is supplied, but KCI tank is not supplied for TN1 or TN2.

*2: Prepare an air pressure regulator as shown in the diagram below when the medium-pressure reserve tank is used.

- To pH sensor (to be prepared separately) F03.ai
- *3: Mark band is shown by alphanumeric and fork terminals are used.
 *4: Mark band is shown by numeral and pin terminals are used. When terminal box is used, select WTB10-PH1.
- When terminal box is used, select WTB10-PH1.*5: The tag which indicated the color, the sign, and the number is
- attached to the cable of a sensor.
 *6: Choose Perfluoroelastomer (FFKM) when this is used in organic
- solvent, high temperature alkaline solution.
- *7: Choose when using in high alkali or high temperature alkaline solution.
- *8: Choose when using in the heavily contaminated application.*9: Mark band is shown by numeral and M3 ring terminals are used.
- When terminal box is used, select WTB10-PH3. *10: Mark band is shown by numeral and M4 ring terminals are used.
- When terminal box is used, select WTB10-PH5. *11 Select -V for a measuring system.
- *12 Option /K (with measurement law of Japan certificate) cannot be specified.

 $\dot{\text{Do}}$ not allow the part above the sensor flange to contact with the solution.

2. ORP Sensor

KCI Refillable Type ORP Sensor

Model		Su Co	iffix ode	C I	Option Code	Specifications
OR8ERG						KCI Refillable Type ORP Sensor
Electrode	-A	U				Gold
	-P	т				Platinum
Cable Lengt	th -03				3 m	
	- (-05		·····	5 m
		-07		·····	7 m	
		-10			·····	10 m
		-1	5			15 m
		-20	0			20 m
Measuring			-N			For OR200/OR400 (*1)
System			-E		·····	For FLXA402, PH202/FLXA202/FLXA21 (*2)
		-F			·····	For FLXA202/FLXA21 (*5)
		-В			For OR100 (*3)	
		-G				For FLXA402, PH450G,PH202/TB (*4)
Style			Τ	*A		Style A

*1: Mark band is shown by alphanumeric and fork terminals are used.
*2: Mark band is shown by numeral and pin terminals are used. When terminal box is used, select WTB10-PH1.

- *3: The tag which indicated the color, the sign, and the number is attached to the cable of a sensor.
- *4: Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH3.
- *5: Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.

KCI Filling Type ORP Sensor

Model	Suffix Code			le	Option Code	Specifications	
OR8EFG							KCI Filling Type ORP Sensor
Electrode	-A	U					Gold
	-P	т					Platinum
Cable Length		-0	3				3 m
and KCI Tube		-0	5				5 m
Length		-0	7				7 m
		-1	0				10 m
		-15					15 m
		-2	0				20 m
KCI Reserve			-T1	T1			For general purpose
Tank (*1)			-T1	Т2			For medium pressure (*2)
			-TI	N1			For maintenance (for TT1)
			-TI	N2			For maintenance (for TT2)
Measuring Sys	ster	n		-N			For OR200/OR400 (*3)
				-E			For FLXA402, PH202/FLXA202/FLXA21 (*4)
				-F			For FLXA202/FLXA21 (*7)
	-в					For OR100 (*5)	
	-G					For FLXA402, PH450G.PH202/TB (*6)	
Style					* A		Style A
Option	Spe	ecia	al jur	nctio	on	/TF	PTFE junction (*8)

*1: A 50A (2-inch) pipe mounting bracket is supplied with TT1 and TT2.

The number of bottles filled with 250 mL KCl solution, which are supplied respectively, are as follows:

TT1 : 1 bottle TT2 : 0 bottle

No KCI solution bottle is supplied for TT2. Arrange it from accessories or auxiliary parts.

- Only supply tube is supplied, but KCI tank is not supplied for TN1 or TN2.
- *2: Prepare an air pressure regulator as shown in the diagram below when the medium-pressure reserve tank is used.

To pH sensor (to be prepared separately)

- *3: Mark band is shown by alphanumeric and fork terminals are used.
- All Rights Reserved. Copyright © 2000, Yokogawa Electric Corporation

- *4: Mark band is shown by numeral and pin terminals are used. When terminal box is used, select WTB10-PH1.
- *5: The tag which indicated the color, the sign, and the number is attached to the cable of a sensor.
- *6: Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH3.
- *7: Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.
- *8: Choose when using in the heavily contaminated application.

3. pH Measuring System for High Purity Water

pH Sensor for High Purity Water

	Model		Su	iffi	k C	ode	e	Option Code	Specifications									
ĺ	PH8EHP	·····							pH sensor for high purity water									
Ī	Cable	-0	3						3 m									
	Length	-0	5						5 m									
		-0	7						7 m									
		-1	0						10 m									
		-1	5						15 m									
		-2	0						20 m									
		-V	3						For Variopin connector 3m (*6)									
		-V	5						For Variopin connector 5m (*6)									
		-V	7						For Variopin connector 7m (*6)									
		-VA					-VA				-VA							For Variopin connector 10m (*6)
		-VB							For Variopin connector 15m (*6)									
		-VC							For Variopin connector 20m (*6)									
	Solution Ground Tip		-т	'N					Titanium									
ł	KCI Reserve	Tar		.т	Τ1				For general purpose									
	(*1)				т. Т.2				Rig volume tank (With 500 ml tank)									
	(')		-113				For maintenance (for TT1)											
ł	-		_		N				Always -N									
ł	Measuring S	(cta	m						For PH200/PH400 (*2)									
	weasuring 0	you				-F			For ELXA402 ELXA402T DH202/ELXA202/									
									FI X Δ21 (*3)									
						-F			For ELXA202/ELXA21 (*5)									
									For FLXA402 FLXA402T PH450G									
						ľ	-		PH202/TB (*4)									
						-v	,		Variopin connector (*7)									
Ì	Style						*A		Style A									

*1: The number of bottles filled with 250 mL KCl solution, which are supplied respectively, are as follows: TT1 : 1 bottle

TT3:2 bottles

- Only a supply tube is supplied, but no KCI tank is supplied for TN1.
- *2: Mark band is shown by alphanumeric and fork terminals are used.
- *3: Mark band is shown by numeral and pin terminals are used. When terminal box is used, select WTB10-PH1.
- *4: Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH3.
- *5: Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.
- *6 Select -V for a measuring system.
- 7 Do not allow the part above the sensor flange to contact with the solution.

pH Holder for High Purity Water

Model	Suffix Code			Option Code	Specifications
PH8HH					pH Holder for High Purity Water, wall-mount type
Connection	-J	PT			Rc1/4 (Inlet), Rc1/2 (Outlet)
ports	-N	PT			1/4NPT (Inlet), 1/2NPT (Outlet)
-		-H			Always -H
Style			*A		Style A
Option	M	ounting		/P	Pipe mounting bracket
	Br	acket			

Terminal Box 4.

Terminal Box .

Model		Suffix Code	Option Code	Specifications	
WTB10				Terminal box	
Combined System	-PH	11		For FLXA402, FLXA402T, PH202, FLXA202/FLXA21	
	-Pŀ	12		(General sensor and PH4/UK4 sensor of pin terminals) (*6) (*7) For PH202, FLXA202/FLXA21 (PH4/OR4 sensor of pin terminals) (*1) (*6)	
	-PH	13		For FLXA402, FLXA402T, PH450G,	
	-PH	14		(General sensor and PH4/OR4 sensor of M3 ring terminals) (*4) (*7) For FLXA402, FLXA402T, PH450G, PH202/TB (PH4/OR4 sensor of M3 ring terminals) (*1) (*4) For FLXA202/FLXA21	
	-PF	16		(General sensor and PH4/OR4 senso of M4 ring terminals) (*5) (*7) For FLXA202/FLXA21 (PH4/OR4 sensor of M4 ring terminals (*1) (*5)	
-	-	NN		Always -NN	
Cable Length -00 (*2) -05 -10 -15			0 m (*3) 5 m 10 m 15 m		
Option	ption Mounting Bracket			Pipe mounting bracket Wall mounting bracket	
	Conduit Adapter			G1/2 1/2NPT	

*1: Use -PH2, -PH4, -PH6 of combined system when using adapter with temperature sensor (SA405) is used. For WTB10 of combined system, maximum cable length including

*2: sensor cable length should be 20 m.

*3: The dedicated extension cable should be used.

*4: M3 screw terminals and cable with M3 ring terminals are used.

*5: M4 screw terminals and cable with M4 ring terminals are used.

*6: *7: M4 screw terminals and cable with pin terminals are used. Use -PH1, -PH3, -PH5 of combined system when not using SA405 in case of PH4/OR4.

5. Accessories

Accessories for pH Meter •

Model		Suffix Code	Option Code	Specifications
PH8AX				Accessories for pH meter (*1)
Calibration	-L			Two bottles, each containing
Reagents				250 mL solution (pH7 and pH4)
	-P			24 bags, each bag containing
				powder for 500 mL solution
				(pH7 X 12 bags and pH4 X 12 bags)
				and two 500 mL polyethylene bottles.
Style		*A		Style A
Option (*2)			/STD	Sensor stand (with mounting
				bracket for 50A 2-inch pipe)
			/KCLL	KCI solution (one 250 mL
				polyethylene bottle)
			/KCLP	KCI powder (three bags,
				250 mL solution each)
			/TMP	Thermometer (0 to 100°C)

*1: Including the following:

Two 200 mL polyethylene cups

One cleaning bottle Either /KCLL or /KCLP is required for PH8EFP-□-□-TT2. *2:

Accessories for ORP Meter

Model	Suffix Code	Option Code	Specifications
OR8AX			Accessories for ORP meter (*1)
Style	*A		Style A
Option (*2)		/STD /KCLL	Sensor stand (with mounting bracket for 50A 2-inch pipe) KCI solution (one 250 mL polyethylene bottle) KCI powder (three back
		/TMP	250 mL solution each) Thermometer (0 to 100°C)

*1: Including the following: Two 200 mL polyethylene cups One cleaning bottle One bearing bottle One pack of quinhydrone reagent powder (three bags, 250 mL solution each) One 250 mL polyethylene bottle Either /KCLL or /KCLP is required for PH8EFP-□-□-TT2. *2:

6. Spare Parts

• Spare Parts for pH Meter

Pa	art Name	Part Number	Remarks
Glass	General	K9142TN	One for PH8ERP, PH8EFP, PH8EHP
electrode	purpose	K9319NA	One for PH8ERP/PF, PH8EFP/PF
	Certified	K9142TP	One for PF8EFP
	version	K9319NB	One for PH8EFP/PF
	High alkali	K9142TU	One for PH8EFP/HA
		K9319NC	One for PH8EFP/HA, /PF
Junction	General purpose	K9142TH	One for PH8ERP, PH8EFP
		K9319QA	One for PH8ERP, PH8EFP/PF
	High purity water	K9142TK	One for PH8EHP
	Fluororesin	K9142HW	One for PH8EFP/TF
	(PTFE)	K9319QB	One for PH8EFP/TF/PF

Spare Parts for pH Meter

Part Name	Part Number	Remarks
KCl solution (3.3 mol/L)	K9084LP	Six 250 mL polyethylene bottles
Buffer solution for calibration (pH4)	K9084LL	Six 250 mL polyethylene bottles
Buffer solution for calibration (pH7)	K9084LM	Six 250 mL polyethylene bottles
Buffer solution for calibration (pH9)	K9084LN	Six 250 mL polyethylene bottles
Powder for buffer solution (pH4)	K9020XA	12 bags,each for preparation of 500 mL
Powder for buffer solution (pH7)	K9020XB	12 bags, each for preparation of 500 mL
Powder for buffer solution (pH9)	K9020XC	12 bags, each for preparation of 500 mL
KCI powder (for PH8EFP, PH8EHP)	K9020XU	8 bags, each for preparation of 250 mL
KCI powder (for PH8ERP)	K9142UT	2 bags, 1 bottle of 3.3 mol/L KCl, 1 syringe

Note: The pH value of the calibrating buffer solution may vary depending on storage conditions. Prepare a new solution from powder for accurate instrument calibration

Spare Parts for ORP Meter

Part	Name	Part Number	Remarks						
Sensor	Platinum	K9142TS	One for OR8ERG,OR8EFG						
	Gold	K9142TT	One for OR8ERG,OR8EFG						
Junction		K9142TH	One for OR8ERG,OR8EFG						
		K9142HW	One for OR8EFG/TF						
KCI solutio	n (3.3 mol/L)	K9084LP	Six 250 mL polyethylene bottles						
KCI powde (for OR8EF	r FG)	K9020XU	8 bags, each for preparation of 250 mL						
KCI powde (for OR8EF	r RG)	K9142UT	2 bags 1 bottle of 3.3 mol/L KCl, 1 syringe						
Reagent	Quinhydrone	K9024EC	3 bags, each for preparation of 250 mL						
for check	Iron	K9024ED	3 bags, each for preparation of 250 ml						

■ WIRING DIAGRAMS

*1 : Terminal box is used only where pH analyzer/converter or ORP analyzer/converter is installed remotely from pH or ORP sensor (normally not needed).

Use this terminal box to connect to FLXA402, FLXA402T (except for ORP), PH202G, FLXA202/FLXA21 with pin terminals. Use WTB10-PH3 terminal box to connect to FLXA402, FLXA402T (except for ORP), PH450G or PH202/TB with M3 ring terminals. Use WTB10-PH5 terminal box to connect to FLXA202/FLXA21 with M4 ring terminals. *2 : This cable is specified in the option code for the terminal box.

DIMENSIONS

Holder for high purity water PH8HH

Unit : mm Hole dimensions for Holder mounting

108

F11.ai

Terminal box WTB10-PH1, -PH3, -PH5

Unit : mm

■ SELECTION CRITERIA FOR pH/ORP SENSOR AND HOLDER

<General Overall Criteria>

- (1) When any of the two conditions listed below are applicable, select a KCI filling type pH sensor and either the submersion or flow-through type holder.
 - The solution is out of the range 2 < pH < 12.
- The solution contains organic or oil in the order of a few percent.
- (2) When any of the two conditions listed below are applicable, consult our salesperson.
- Strong oxidizing solutions such as aqua regia, chromic acid , hypochloric acid, perchloric acid.
- The solution contains corrosive gases (ammonia, chlorine, hydrogen sulfide).
- (3) Select the material of wetted parts with careful consideration of process characteristics. Inappropriate selection may cause leakage of process fluids, which greatly affects facilities. Considerable care must be taken particularly in the case of strongly corrosive process fluid such as hydrochloric acid, sulfuric acid, hydrogen sulfide, and sodium hypochlorite. If you have any questions about the wetted part construction of the product, be sure to contact Yokogawa.

<Individual Criteria>

1: Can be used, 2: Shortens useful life, N/A: Cannot be used

	Chamical	Concentration	pH *1	Holder	
	Chemical	W/V (%)	(25°C)	Flow-through, Submersion	Guide-pipe
	Sulfuric acid	0.5	1.0	1	N/A
		0.05	2.0	1	1
id	Hydrochloric acid	0.4	1.0	1	N/A
ac	Nitrio opid	0.04	2.0	1	1 N/A
Jic		0.0	2.0	1	1
gar	Phosphoric acid	1.0	2.0	1	2
orç	Boric acid	0.6	5.0	1	1
п	Carbonic acid	0.0	3.6	1	2
	Chromic acid	1.2	0.8	1	N/A
	Sulfurous acid	0.8	1.4	1	2
p	Acetic acid	0.6	2.8	1	1
aci	Formic acid	0.5	2.3	1	1
ic	Oxalic acid	0.9	1.0	1	1
an	Lactic acid	0.9	2.4	1	1
Drg	Phenol acid	0.9	5.4	1	2
0	Monochloroacetic acid	0.9	1.8	1	N/A
Nkali	Calcium hydroxide	0.2	12.4	1	1
	Potassium hydroxide	0.5	12.7	1	2
4	Sodium hydroxide	0.4	12.9	1	2
ts	Ammonium chloride	5		1	1
sal	Aluminous water	5		1	1
id	ZINC Chioride	5		1	1
Ac	Ferric chioride	5	13	1	1
		5	1.5	1	
sic Its	Sodium carbonate	5	11.8	1	1
Ba sa	Sodium phosphate	5	11.0	1	2
	Potassium chloride	5		1	1
	Sodium sulfate	5		1	1
alts	Calcium chlorine	5		1	1
Vei Sã	Sodium nitrate	5	8.2	1	N/A
-	Aluminum chloride	5		1	1
ور م	Hydrogen peroxide	1		1	1
zir	Sodium hypochlorite solution	1	12.5	1	2
xdi ige	Chlorinated lime	1		1	2
õ ø	Potassium bichromate	5	4.5	1	1
nic nts	Alcohol	10		1	2
jar ver	Organic solvent or oil			1	N/A
Org	(excluding alconol)				

*1: pH values in table are calculated from dissociation constant (including measured value).

Table of Corrosion-Resistant Materials (The data should be used for reference only)

This table shows corrosion resistance for each single substance alone. If a sample contains two or more substances, the corrosion resistance may differ from that given in this table. The three columns in each cell read from the left: Concentration (%); Temperature (°C), Level of corrosion resistance. The corrosion resistance level; O: Excellent: \bigcirc :Good, \bigtriangleup : poor, \times : unusable. "b" in the table refers to boiling point of each solution.

			Holde		Ult S	raso	nic tra or sol	ansdu ution g	cer m grour	nateria nd tip	Seal O-ring Material Sensor bo		ody al					
		Poly	/prop	ylene		316 S	S	Ha	astell	oy C	Т	itaniı	um	Fluoro rubber (FKM)	F	Rytor	ı	Remarks
	Sulfurous acid	100	20 90	0	6	30	Ø	6	30	0	6	30	O			-		
	Hydrochloric acid	5 5	20 80	0	5	30	×	5	30	O	5 5	30 b	© ×		5 37 37	30 60 90	© △ ×	
cid	Chromic acid	20 20	20 40	$\stackrel{\triangle}{\times}$	10	b	0	20	30	0	10	b	Ø	-	20	20	0	
anic a	Hypochlorous Acid	10 10	20 40	© 0	14	30	×	15	43	Ø	20	40	O	Strong acid ⊚	5	20 40	O X	
lg	Hydrobromic acid		-			-			-		40	30	0			-		
lno	Nitric acid	10 10	20 80	0	10	30	O	10	30	Ø	10	100	0		5 10	20 60	0 X	
	Hydroiodic acid	57 57	20 70	0	57	25	×		-		57	30	0			-		
	Sulfuric acid	3 3	20 100	0	6 5	30 100	© ×	5 5	30 70	0	5 5	30 100	© ×		90 30	20 90	0 0	
	Phosphoric acid	30 30	60 100	© △	15 5	30 b	0	5 5	30 b	0	5 5	30 60	© 0		85	90	O	
	Ammonia water	15 15	80 100	0	10 28	b 65	0	10 20	b 65	0	10 20	b 65	0		15	30	0	
	Potassium hydroxide		-		10 25	b b	0	10 25	b b	0	10 25	b b	0		10 10	20 90	© 	
	Sodium hydroxide	20 20	80 100	0	20 20	30 b	0	20 20	30 b	0	20 20	30 b	0		10 10	20 90	© 	
Alka	Sodium hydroxide, Sodium hydroxide 9 to 11% +Sodium chloride 15%		100	Ø		_			-			93	O	-Strong alkali × Weak alkali∆		90	0	
	Potassium		-		5 35	b	0	5 35	b b	0	5	b b	0		5 35	b b	0	
	Sodium carbonate	sat.	100	0	25	b	0	25	b	0	25	b	0	-	25	90	0	
	Zinc chloride		_		20	b	\triangle	20	b	0	20	b	0	-		_		
	Aluminum chloride		-		25 25	25 25	×		-		10 25	b b	© ×	-		-		
	Ammonium chloride	35	40	0	25	b	\triangle	25	b	0	25	b	0	-	25	90	0	
	Potassium chloride	sat.	60	0	sat.	60	0	sat.	60	O	sat.	60	0	-	20	90	0	
rides	Calcium chloride	sat. sat.	80 100	0	25	b	0	25	b	Ø	25	b	0	-	25	90	0	
Chloi	Ferric chloride	20 20	40 60	0	30	b	×	30	b	×	30	b	O	-	20	60	0	
ΰ	Sodium chloride, 20% + Saturated Cl2 (Electrolysis solution)		100	Ø		90	×		90	×		90	Ø	-		20	Δ	
	Seawater, Magnesium chloride	sat.	24 80	0	42	24 b	\triangle	42	b	Ø	40	24 b	0	-		24 80	0	

			Hold	er ma	terial		Ult	rasoi Sensc	nic tra or solu	insdu ution g	cer m groun	ateria d tip	al	Seal O-ring Sensor body material			ody al		
		Poly	prop	ylene		316 SS	;	На	astello	by C	т	itaniı	ım	Fluor rubbe (FKN	o er I)	F	Rytor	n	Remarks
Sulfates	Ammonium sulfate	5	60	0	20 sat.	b 30	Ø	20 sat.	b 30	0	20 sat.	b 30	0	-	,	10	90	0	Poly- propylene may sometimes be eroded by ammonium sulfate crustals
	Potassium sulfate		_		10	b	0	10	b	Ô	10	b	Ô	-		10	90	0	or yotalo
	Sodium sulfate	C	orros	ion	20	b	O	20	b	O	20	b	O	-		10	90	O	
es	Ammonium nitrate	res	istan	ce is	20	b	Ô	20	b	O	20	b	O	_		10	90	O	
rat		9	jood 1	or	50						50								
Nit N	Sodium nitrate	us	ual si	ans.	50	D	0		_		50	D	0	-			-		
	Sodium sulfite	1			20	b	0		-		20	b	O	-			-		
	Hydrogen peroxide	1			10	30	0		-		10	30	0	-		10	30	0	
S	Sodium sulfido	30	90	O	2	60-90	×	2	60-	\triangle	15	30	O	_		5	90	0	
the		20	80	O					90										
ð	Potassium bichromate				10	<u>b</u>	0	10	b	O	10	b	0	-		10	-		
	Sodium sulfide	60	80	0	10	<u>b</u>	0	ļ	-		10	b		-		10	90	0	
	Sodium bisulfate				10	b			-	^	10	<u>b</u>	0	-			-		
	Wet chlorine gas		40 60	∆ ×		30	^		30			30	•	-			20		
Ś	Sea water +		_			95	×		95	\triangle		95	O	-			_		
ase	Saturated CI2								30	0		30	0	<u> </u>			30	~	
Ű	Hydrogen sulfide		_			20	0					20	0	_			-		
			00	0		20						30-					00		
	Sulfurous acid gas		80	0		-			-			90	0	-			80	0	
			100	0															
	Acetaldehyde	100	20	0	100	30	0		-			-		-		100	20	0	
	Acetone	100	20	0	50	25	0		-			-		100 25	×	100	b	0	
		100	20	0	100	110	0												
	Aniline	100	20 70	Ő	100	25	Ø		_			_		_		100	90	\bigcirc	
		100	100	$\overline{\Delta}$	100	20	-									100	00	0	
	Ether	100	20	\triangle	100	25	O		-			-		-		100	20	0	
	Ethylene dlycol	100	70	O	100	25	O		_			_		_			_		
		100	100	0															
	Ethyl alcohol	96	70	0	100	<u>b</u>		<u> </u>	-			_		-		100	90	0	
	Methyl chloride	100	20		100	25	0		_					-	~	100	-		
	Glacial acetic acid	100	100 100 70	0	100	-	0		-			-		100 24	^	100	20		
	Glycerin	100	100	Õ	100	20			-			-		-			-		
es		100	20	0							1					100	20	O	
and	Chlorophenol	100	70	\bigtriangleup		-			-			-		-					
st		100	100	×				<u> </u>								100			
sut	Xylene Chlorobozona	100	20	×					-					-		100	20	U	
ic.	Chloroform	100	20	× ×	100		0	100		0	100		0			100	-	~	
Jan		100	20		100	<u> </u>		100	0	•	100	U	•			100	90		
or C	Dioxane	100	70	\triangle		_			_			_		-		100	90	O	
Ŭ		100	100	\times															
	Dichloroethare	100	70	×		-			-			-		-			-		
	Ethvl nitrate	100	20	O	100	105	O		_			_		_		100	90	0	
	Carbon tatraaklarida	100	20		00		^				00			100.04	~				
		100	20	×	100	<u> </u>		100		0	100	<u>b</u>		100 24	X	100	-	~	
	Toluene	100	20	X	100	-	0	100	-	9	100	145	0	- 1		100	90		
	Benzophenone	100				_		1	-			-	9	-		100	-		-
	•	100	20	O															
	Benzaldehyde	100	70	0		-			-			-		-		100	20	\triangle	
	Daverdal 1	100	100	Х	<u> </u>			<u> </u>						ļ		100	90	×	
	Benzyl alcohol	100	20	O	100	30	\bigtriangleup		-		100	30	0	100 25	0	100	90	\bigcirc	
		10	70	0	37	h	0	37	h	0	37	b	Ø						
	Fomaldehyde	10	100	Ő					~					-			-		

		Holder ma			terial		Ulti S	raso	nic tra or soli	ansdu ution g	cer m grour	ateria d tip	al	Seal O-ring material		Sensor body material			
Polypropy		ylene	316 \$		S	Ha	Hastelloy C			itaniu	ım	Fluor rubbe (FKN	o er I)	F	Ryton	Remarks			
	Methylnaphthelen			0		-			-			-		-			-		
	Methyl ethyl ketone	100	20 70	0 		-			_			-		-		100	90	O	
	Methyl alcohol	100	20	0	100	25	O		-			-		-		100	25	0	
ances	Nitrobenzene	100 100 100	20 70 100	© 0 ×		_			-			-		-		100	90	×	
	Acetic acid	100 100 100	20 70 100		10	b	O		-		10	b	Ø	-			_		
subst	Phenol	100 100	20 100	© 0	95	30	O	95	30	0	95	30	O	-		100	90	\triangle	
<u>ü</u>	Benzonic acid	100				-			-			-		-			-		
Organ	Motor oil	100 100 100	20 70 100	0 0 0		_			_			_		-		100	20	0	
	Petroleum ether	100	20	0		-			-			-		-		100	20	0	
	Kerosene	100 100	20 70	0 ×		-			_			101	O	-		100	20	0	
	Tartaric acid	10 10 10	40 60 80	© 0 4	50	100	Δ	50	100	Δ	50	100	O	-			_		
	Oil and fats	100	70	0	100	25	O	100	180	0	100	180	O	-			-		
	Carbon sulfide	100	20	×	100	25	0		-			_		100 25	0		-		

- CAUTION -

Select the material of wetted parts with careful consideration of process characteristics. Inappropriate selection may cause leakage of process fluids, which greatly affects facilities. Considerable care must be taken particularly in the case of strongly corrosive process fluid such as hydrochloric acid, sulfuric acid, hydrogen sulfide, and sodium hypochlorite. If you have any questions about the wetted part construction of the product, be sure to contact Yokogawa.

Enquiry Specifications Sheet for pH/ORP Sensor

For enquires on the Yokogawa pH/ORP sensors, please tick (v) the appropriate box □ and write down the relevant information in the blanks.

1.	General Information Company name	-				_						
	Contact Person	;	Department;									
	Plant name	;				_						
	Measurement location	;										
	Purpose of use	; 🗆 Indica										
	Power supply	,		V AC,	<u> </u>							
2	Measurement Conditi	ons										
	(1) Process temperatur	e;	to	No	ormally		[°C]					
	(2) Process pressure	;	to	No	ormally		[kPa]					
	(3) Flow rate	;	to	No	ormally		[L/min]					
	(4) Flow speed	;	to	No	ormally		[m/s]					
	(5) Slurry or contamina	nts	; 🗆 No, 🗆	∃ Yes				_				
	(6) Name of process flu	ıid	;					_				
	(7) Components of proc	cess fluid	;					_				
	(8) Others ;							_				
3.	Installation Site											
	(1) Ambient temperatur	e;						_				
	(2) Location	; 🗆 Out	doors,⊡ Indo	oors								
	(3) Others ;							_				
	Deminente											
4.	(1) Mooduring rongo		. 🗆 nH 0 ta									
	(1) Measuring range			0 14, LI <u></u>		402 D				າ∩າ		
				$\square OR400$		1 OR 100		Ⅰ, ⊔ Ⅰ Ⅰ	I 4 50, ШТП	202,		
	(3) System configuration	n selectic	n: □ Sensor	⊡ Holder		Analyze	r/Convert	er. □ C	leaning sv	stem.		
	(-) -)gg		☐ Termina	al box, □ A	ccessories	·		,		,		
	(4) Sensor cable length	1	; 🗆 3 m, 🗆	5 m, 🗆 7 ı	n, 🗆 10 m, 🛙	⊐15 m, I	🗆 20 m, E		m			
	(5) Sensor operating pr	essure	; □10 kPa	or less, □	Greater than	າ 10 kṔa	,					
	(6) Type of holder		; 🗆 Guide p	pipe, 🗖 Su	bmersion, 🛛] Flow-th	rough, 🗆	Susper	nsion,			
			□ Angled	floating ba	II, 🗆 Vertical	I floating	balī	-				
	(7) Cleaning method		; 🗆 No clea	aning, 🗆 U	trasonic clea	aning, 🗋	l Jet clear	ning, 🗆	Brush clea	ning		
	(8) Sample temperature	3	; 🗆 -5 to 10)5°C, □ -5	to 100°C, □	l -5 to 80)°C					
	(9) Others ;											